The Second Main Theorem for Entire Curves into Hilbert Modular Surfaces
نویسندگان
چکیده
Our main goal of this article is to prove the second main theorem for entire curves into Hilbert modular surfaces. We show a condition such that entire curves in a Hilbert modular surface of general type are contained in the exceptional divisor of a Hilbert modular surface. We also show the second main theorem for compact leaves of holomorphic foliation on a smooth projective algebraic surface.
منابع مشابه
An extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملBilliards and Teichmüller curves on Hilbert modular surfaces
This paper exhibits an infinite collection of algebraic curves isometrically embedded in the moduli space of Riemann surfaces of genus two. These Teichmüller curves lie on Hilbert modular surfaces parameterizing Abelian varieties with real multiplication. Explicit examples, constructed from L-shaped polygons, give billiard tables with optimal dynamical properties.
متن کاملZero-cycles on Hilbert-blumenthal Surfaces
Introduction. The main object of study in this paper with respect to zero-cycles is a special class of Hilbert-Blumenthal surfacesX, which are defined overQ as smooth compactifications of quasi-projective varieties S/Q, more precisely, of coarse moduli schemes S that represent the moduli stack of polarized abelian surfaces with real multiplication by the ring of integers in a real quadratic fie...
متن کاملLinear Manifolds in the Moduli Space of One-forms
We study closures of GL+2 (R)-orbits on the total space ΩMg of the Hodge bundle over the moduli space of curves under the assumption that they are algebraic manifolds. We show that, in the generic stratum, such manifolds are the whole stratum, the hyperelliptic locus or parameterize curves whose Jacobian has additional endomorphisms. This follows from a cohomological description of the tangent ...
متن کاملOn Finiteness Conjectures for Modular Quaternion Algebras
It is conjectured that there exist finitely many isomorphism classes of simple endomorphism algebras of abelian varieties of GL2-type over Q of bounded dimension. We explore this conjecture when particularized to quaternion endomorphism algebras of abelian surfaces by giving a moduli interpretation which translates the question into the diophantine arithmetic of Shimura curves embedded in Hilbe...
متن کامل